PATH INTEGRAL METHODS IN QUANTUM FIELD THEORY
Passe o mouse na imagem para ver detalhes Ampliar

PATH INTEGRAL METHODS IN QUANTUM FIELD THEORY

This is a concise graduate level introduction to analytical functional methods in quantum field theory. Functional integral methods provide relatively simple solutions to a wide range of problems in quantum field theory. After introducing the basic mathematical background, this book goes on to study applications and consequences of the formalism to the study of series expansions, measure, phase transitions, physics on spaces with nontrivial topologies, stochastic quantisation, fermions, QED, non-abelian gauge theories, symmetry breaking, the effective potential, finite temperature field theory, instantons and compositeness. Serious attention is paid to the shortcomings of the conventional formalism (e.g. problems of measure) as well as detailed appraisal of the ambiguities of series summation. This book will be of great use to graduate students in theoretical physics wishing to learn the use of functional integrals in quantum field theory. It will also be a useful reference for researchers in theoretical physics, especially those with an interest in experimental and theoretical particle physics and quantum field theory.
Editora: CAMBRIDGE UNIVERSITY PRESS
ISBN: 0521368707
ISBN13: 9780521368704
Edição: 1ª Edição - 1988
Número de Páginas: 352
Acabamento: PAPERBACK
por R$ 463,08 4x de R$ 115,77 sem juros